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Abstract

HyperCR Einstein—Weyl equations inH21 dimensions reduce to a pair of quasi-linear PDEs
of hydrodynamic type. All solutions to this hydrodynamic system can in principle be constructed
from a twistor correspondence, thus establishing the integrability. Simple examples of solutions
including the hydrodynamic reductions yield new Einstein—Weyl structures.
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1. Theequation

Let us consider a pair of quasi-linear PDEs
u; + wy + Uwy — wu, =0, uy+w,=0 (1.2)

for two real functionst = u(x, y, 1), w = w(x, y, t). This system of equation has recently
attracted a lot of attention in the integrable systems literdfyd®,17,18] In [3] it arose in
a different context, as a symmetry reduction of the heavenly equation.

The system(1.1) shares many properties with two more prominent dispersionless in-
tegrable equations: the dispersionless Kadomtsev—Petviashvili equation (dKP), and the
SU(c0) Toda equation, but it is simpler in some ways:

e Its Lax representation
[L,M] =0, whereL =9, —wd, —Ardy, M =0, + udy — Adyx (1.2)
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does not contain derivatives with respect to the spectral paramétiee Lax pairs for
SU(c0) Toda, and dKP contain such terms).
e Consider a one-form

e(A) = dx — udy + wdr 4+ A(dy — u dr) + A2 dr.
The systen{l.1)is equivalent to the Frobenius integrability condition
e(A) Ade(A) =0, (1.3)

where d keeps constant. This formulation is dual to the Lax representgtia?), because
the distribution spanned by andM can be defined as the kernelegh). The analogous
dual formulations of dKP and Sldo) Toda involve distributions defined by two-forms
[5,16,21] and are considerably more complicated.

One of the aims of this paper is to provide a twistor descriptio(iLdf) given by the
following theorem.

Theorem 1.1. There is a one-to-one correspondence between the equivalence classes of
solutions to(1.1) under point transformationsand complex surfacegwistor spaceps Z
such that

e There exists a holomorphic fibration: Z — CP?.

e There exists a three-parameter family of holomorphic sectionsweith normal bundle
O(2) invariant under an anti-holomorphic involution: Z — Z which fixes an equator
of each section

The existence of the anti-holomorphic majis required to construct real solutions to
(1.1). If one is merely interested in complex solutions, then the holomorphic fibration, and its
O(2) sections are all one needhieorem 1.provides a parameterisation of local solutions
to a non-linearequation (1.1py a holomorphic data unconstrained by any equations. In
this sense it resembles theverse scattering transforntt remains to be seen whether this
theorem can be implemented in practice to construct explicit new solutiqaslfo

The proof of Theorem 1.1will be postponed tdSection 2.2 In the next section we
shall demonstrate that solutions(@f1)can be used to construct Lorentzian Einstein—Weyl
(EW) structures in three dimensions (formul@e3)). All EW structures which admit a
hyperboloid of Cauchy—Riemann structures locally arise from solutio(t.1@ We shall
give examples of new Einstein—~Weyl spaces which arise in that wa$ebiion 3we
review the hydrodynamic reductions (if.1), and use them to construct another class of
Einstein—Weyl spaces. Finally, iSection 4we study a hierarchy of commuting flows
associated t¢1.1).

2. Thegeometry

Let W be athree-dimensional manifold with a torsion-free connedipend a conformal
structure ] of signature(+ + —) which is compatible withD in a sense that

Dh=w®h
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for some one-formw. Hereh € [k] is a representative metric in a conformal class. If we
change this representativeby> 2h, thenw — w+2d In v, wherey is anon-vanishing
function onW. A triple (W, [k], D) is called a Weyl structure. The conformally invariant
Einstein—Weyl equations are

Rab = iRhw, a,b,...=1,2,3. (2.1)

Here R, is the symmetrised Ricci tensor Bf, andR is the Ricci scalar. One can regard
h andw as the unknowns in these equations. Once they have been found, the covariant
differentiation w.r.t.D is given by

Dx=Vx—ix®@w+1A-mw®V —hw, h),

wherey is a one-form of conformal weight, andV is the Levi-Civita connection of.

It is well known [2,13,19]that the EW equations are equivalent to the existence of a
two-dimensional family of surface8 ¢ W which are null with respect tb, and totally
geodesic with respect tb. This condition has been used[B#] to construct a Lax repre-
sentation for EW equation. The details are as followsVietVs, V3 be three independent
vector fields orW, and letes, e, e3 be the dual one-forms. Assume that

h=e;®er —2(e1 ®e3+e3® e1)

and some one-forma give an EW structure. L&t(A) = Vi — 24 Vo+12V3, wherex € CP?.
Thenh(V(1), V(1)) = 0 for all » € CP soV()) determines a sphere of null vectors. The
vectorsV, — AV> and Vo — A V3 form a basis of the orthogonal complementWgh.). For
each) e CP! they span a null two surface. Therefore the Frobenius theorem implies that
the horizontal lifts

L=Vi—AVa+1d, M =V, — A V34 md, (2.2)
of these vectors t8(W x CP') span an integrable distribution, a(®i1)is equivalent to
[L, M] =aL + BM

for somex, g which are linear irk. The functions andm are third order irk, because the
Mbbius transformations of P! are generated by vector fields quadratia.in

Let W1, ..., W4 be linearly dependent vector fields which sgaf. Given a Lax repre-
sentation V1 — AWo, W3 — AW4] = 0, itis always possible to put it in the for(d.2) with
m = | = 0. Therefore the Lax pa(i.2)for Eq. (1.1)is a special case of the Einstein—\Wey!I
Lax pair(2.2). One finds that

Vi =8 +udy + w? — w)d,, Vo = 8y + udy, Vs = 0y
and
[Vi—AV2, Vo — AV3] = —(Va(u) — AV3(u))(V2 — AV3)

is equivalent tdeg. (1.1)
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The dual one-formses, e2, e2) give a metric in the EW conformal class. The associated
one-form can now be found such that the resulting Einstein—Weyl structure is

h=(y—u dr)? — 4(dx — u dy + wdr) dr, w =uydy + (Ul + 2u,) dr.  (2.3)

The Ricciscalar oD is R = (3/8)(u,)?, and the one-forma(x) used in the dual formulation
(1.3)ise(r) = e1 + 2hep + A2e3.

The absence of the vertical terms in the Lax pair implies that the Einstein—Weyl structure
belongs to the Lorentzian analogue of the so-called hyperCR [dl&ksThe (Lorentzian)
hyperCR EW spaces arise on the space of trajectories of tri-holomorphic conformal Killing
vectors in four-dimensional manifolds with (pseudo)hyper-complex struétieaders
unfamiliar with the details of these pseudo-hyper-complex geometries in four dimensions
should note that the conditidn= m = 0 in (2.2)can be used as an equivalent definition of
the hyperCR class, and can go directly to the statemehhebrem 2.1

Any pseudo-hyper-complex conformal structdkgl, 7, S, 7) in four dimensions with a
conformal Killing vectork gives rise to an EW structufg,14] defined by

h:=|K|"%g— |K|*K Q K, w:=2|K| %%, (K AdK), g€ [gl, (2.4)

and all EW spaces arise from this construction. If the Killing ve&opreserves the en-
domorphismd, S, T, then the resulting EW structu(@.4)is called hyperCR. Conversely,
given a hyperCR Einstein—Weyl structuie, ®) one can construct the representatvef

a pseudo-hyper-complex conformal clagkldy

g=el (Vh—v7idT + p)?), (2.5)

whereT is a group parameter, and the functigrand the one-forng solve the monopole
equation

#(dV + J0V) = dB (2.6)

(herex is taken with respect th). There exists a special solution(@.6)with 8 = —w/2,
such that the resulting metric is pseudo-hyper-Kahler (the two-forms associatef] 1o
are closed). The details of all that are[ir1]. Minor sign changes are needed to apply the
theory in signaturé+ + —). The hyperCR EW structure were constructed out of symmetry
reductions of heavenly equations[8].

We shall now show that the systdih1) arises as a symmetry reduction of the pseudo-
hyper-Kahler condition with a general homothetic Killing vector, thus establishing the
following result.

1 A smooth real four-dimensional manifoltit equipped with three real endomorphisms, 7 : TM — TM
of the tangent bundle satisfying the algebra of pseudo-quaternions

—1°=82=T%=1, IST=1,

is called pseudo-hyper-complex iff the almost complex strucluteal + bS+ cTis integrable for any point of

the hyperboloidi? — b% — ¢? = 1. A choice of a vectoX e TM defines &+ 4 -) conformal structureg] with

an orthonormal framg, 1X, SX TX. If this conformal structure admits a Killing vect&rwhich preservesg S, T,

then the hyperboloid of complex structurkdescends to a hyperboloid of Cauchy—Riemann (CR) structures on
the space of orbit® of K. This justifies the terminology.
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Theorem 2.1. All Lorentzian hyperCR Einstein—Wey! structures are locally of the form
(2.3), where yw satisfy(1.1).

Proof. It follows from the work of Plebaski [20] that all pseudo-hyper-Kéhler (or ASD
vacuum) metrics are locally of the form
¢ =2(dZdY +dW dX — OxxdX? — OyydW? + 20xydW dZ), (2.7)

where(W, Z, X, Y) are the local coordinates on the open bakfhand® = &(W, Z, X, )
satisfies the second heavenly equation

Ozy + Owx + OxxOyy — O%y = 0. (2.8)

In an ASD vacuum the most general tri-holomorphic homothetic Killing vektsatisfies
LxX; = cX;, whereL is the Lie derivative alon& and X1, X», '3 are three closed
self-dual two-forms corresponding to the complex structures. We can sell without
lose of generality. In the coordinate system adoptg@ {0)

¥ =dW Adz, Y, =dW AdX +dZ A dY

and the residual freedom in the choice of coordinates can be used to set

K—Za+X8
T Tz X’

The Killing equations yield
Lk (Oxx) = —Oxx, Lg(Oxy) =0, Lk (Ovy) = Ovy.
Let U andT be functions oiR* such thatk = 9/dT andLx (U) = 0. We can take

T =In(Z) v=-_X
- , =

The compatibility conditions for the Killing equations imply the existenc@ et G (Y, W, U)
such that

Oxx = —e~ TGy, Oxy = Gvu, Ovyy = —el Gvy.
The heavenlyquation (2.8pecomes

—(Gy — UGyy) 4+ Guw + GywGuu — G&, =0,
or (in terms of differential forms)

—GydY AdU AdW +UdGy AdU AdW +dGy A dY A dU

+dGy AdGy A dW = 0. (2.9)
Define

x =Gy, y=17, t=-W, H(x,y,t) =xXU(x, y,1) = G(Y, W, U(x, y, 1))
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and preform a Legendre transform
dH =d(xU — G) = Udx — GydY — Gy dW = H,dx + H,dy + H, dr.
Therefore
U=H, Gy=-Hy,, Gy=H,.

Differentiating these relations we find

H. H?
Gyy=——2 Gyy= —Hyy+ H—Xy
XX

Guyu = ,
HXX

Hyy'
The differential equation fof(x, y, 1) is obtained fron(2.9)
Hyt — (HyxyHx — HyHxx) = Hyy. (2.10)

This equation is equivalent to the systéinl) which can be seen by setting= H,,
w = —H,.

The rﬁetric(2.7) can be written in the forn§2.5) whereh, w are given by(2.3), and
V = u,/2, B = —w/2 satisfy the monopolequation (2.6) We deduce thaf2.3) is
the most general EW space which arises on the space of orbits of tri-holomorphic ho-
mothety in pseudo-hyper-Kéahler four manifold, and so it is the most general hyperCR
EW space. O

2.1. Simple solutions

Simple classes of solutions {t.1) yield non-trivial Einstein—Weyl structures, some of
which appear to be new:

e Let us assume thatandw in (1.1)do not depend on. One needs to consider the two
casesw = 0 andw = w(r) # 0 separately. The corresponding equations can now be
easily integrated to give (in the # 0 case one needs to change variables)

h=(y+Ad)?—4ded, w=Ady+AAds, (2.11)

whereA = A(x) is an arbitrary function. Some interesting complete solutions belong to
this class. For examplé = ax, wherez is a non-zero constant leads to the Einstein—-Weyl
structure on Thurston’s nil manifols x R? [19]: settingx = a?x, and rescaling by

a constant factor gives

h=d*dy+idn?—4didr,  w=da’dy+32dp).

In this simple case we can find a kernel of the Lax vector figld®) (the twistor functions)
to ber, v =y + At —a~? In(r — a?x).

e Looking for t-independent solutions reduc€kl) to a linear equation. Rewriting the
resulting system as

dx Adu —dy Adw =0, dx Adw — (udw — wdu) Ady =0
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and regarding andy as functions of: andw yields a system of linear equation. One of
these equations implies that= — F,,, x = F,, for someF = F(u, w), while the other
equation yields

Fuu + UFUw + wl:ww = 0

e The constraint, = O leads to trivial EW spaces. One finds thdtas to be linear iry,
and the EW one-form is closed. It can therefore be set to 0 be the conformal rescaling,
and the EW structure is conformal to an Einstein metric.

2.2. Proof of Theorem 1.1

Given a real-analytic solution tfl.1) we can complexify it, and regard and w as
holomorphic functions of local complex coordinatasy, r) on a complex three-manifold
WC. The twistor space for such solution is obtained by factorifg = W€ x CP! by
the distributionZ, M (1.2). This clearly has a projection: F — Z and we have a double
fibration

W€ x CP!
r/ g
we Z.

The absence of vertical terms In M shows thak descends fron¥ to Z thus giving the
holomorphic projectionr : Z — CP!. Each pointp € WC determines a spheig (a
section ofr) made up of all the integral surfaces bf M throughp. The normal bundle
ofl,in ZisN = TZ];,/Tl,. This is a rank 1 vector bundle oveiPl, therefore it has to

be one of the standard line bundi@¢r). To see that = 2, note thatV can be identified

with the quotientr*(TpW(C)/{spanL, M}. In their homogeneous form the operatérsyv

have weight 1, so the distribution spanned by them is isomorphic to the b@d
O(—1). The definition of the normal bundle as a quotient gives a sequence of sheaves
overCP2.

0—>(C2®(’)(—1)—>(C3—>N—>O

and we see tha¥ = O(2), because the last map, is given explicitly @, Vo, V3) —
V(L) = V1 — 20V» + A2V clearly projecting ont@(2).

If u, w is a real solutions defined on a real slise c WC, then one has an additional
structure onZ. The real structure(x, y, r) = (x, y, 7) maps integral surfaces @f, M to
integral surfaces, and therefore induces an anti-holomorphic involatiog — Z. The
fixed points of this involution correspond to real integral surface®inand t-invariant
O(2) sections correspond to points .

Conversely, let us assume that we are given a complex margfalith additional struc-
tures described imfheorem 1.1The general construction of Hitchih3] equips the moduli
spaceW of O(2) rational curves with a real-analytic Einstein—Weyl structure: the Kodaira
theorems imply thaW is three-dimensional. Two points I are null-separated if the cor-
responding sections intersect at one poirZimhis defines the conformal structuvg.[To
define a connection note that a directionpate W corresponds to a one-dimensional
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space of(0(2) curves inZ which vanish at two pointsZ; and Z,. This gives distin-
guished curves i which pass through null surfaces i corresponding taZs, Z».

There is one such curve throughand Hitchin defines it to be a geodesic. He moreover
shows that the resulting connection is torsion-free, and that the Einstein—Weyl equations
hold.

This works for arbitrary complex surface with an embedd¥@) rational curve. The
additional structure in the statementT™fieorem 1.1s the holomorphic projection. Its
existence implies that the resulting EW space is hyperCR. Any holomorphic line bundle
L — O(2) with c¢1(L) = 0 inherits the holomorphic projection OPL. Lifts of holo-
morphic sections of — CP? to L are rational curves with normal bundi1) & O(1).
ThereforeL is a twistor space of a pseudo-hyper-complex four maniftd[4]. This
pseudo-hyper-complex structure is preserved by a Killing vector which gives rise to a hy-
perboloid of CR structures . Theorem 2.Implies that(, w) are locally given by2.3),
and we can read ofit, w) which solveEg. (1.1)

2.3. Geodesic congruences

Let (W, [h], D) be a 2+ 1 EW structure. A geodesic congruerncén a region inW ¢ W
is a set of geodesic, one through each poinfofLet x be a generator of (a vector field
tangent ta"). The geodesic conditiog D, x> ~ x” impliesD, x> = M2 + A, x" for some
Ag, WhereMg is orthogonal tge® on both indices. Consider the decompositioritf,

Map = 2ab+ Xap + %eilab‘

The shea’yy, is trace-free and symmetric. The twity is anti-symmetric, and the diver-
gence is aweighted scalar. He?@b = || x|I%hab— xax» iS @an orthogonal projection éfyp.

The shear-free geodesics congruences (SFC) exist on any Einstein—Weyl space. This fol-
lows from a three-dimensional version of Kerr’'s theorem which states that SFCs correspond
to holomorphic curves in the twistor spage On the other hand, imposing the vanishing

of the divergence of a congruence gives restrictions on EW structures, and implies that the
EW space is hyperCRL]. In the local coordinate system adoptedTineorem 2.1(%, )

are given by(2.3), and the shear-free, divergence-free geodesic congruence is generated by
a one-formy = dz. In accordance with the general theory of SFC on Einstein—Weyl spaces

[1], the preferred monopole proportional to the scalar twist «(x A Dx) = —u,/4
will lead to a pseudo-hyper-Kahler metric with a tri-holomorphic homothety in four di-
mensions. This metric is explicitly given b2.5), whereV = —(1/2)x, 8 = —w/2.

Any other monopole yields a general pseudo-hyper-complex conformal structure with a
tri-holomorphic symmetry.
3. Thehydrodynamic reductions

Eqg. (1.1)can be cast in a general quasi-linear vector form

u, + A(Wu, + B(wu; =0, (3.1)
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whereu = (1, w)" is a vector whose components dependary, 1), and

A(u):(_ow i) B(u):(g 8)

A class of solutions to any equation of the fo(B11) can be generated by assuming that

u=u(Ry, ..., RN), whereR' = Ri(x, y, ) (the so-called Riemann invariants) satisfy a
pair of commuting systems of hydrodynamic type
R =y (RR,, R =pRR, i=12..,N (3.2)

(the summation convention has been suspended in this section). The compatibility condi-
tions for the systen(3.2)yield

3y djut 3
L L S T
)2 A R oR/

It turns out that the additional relations

(3.3)

3y ey
e i dj—¢ — i
14 14 14 14

(and analogous relations for') hold. These conditions imply the existence of a diago-
nal metricg = 3, gii (R) d(R")? such that’’f = 9; In(\/zi) = 9;'/(y/ — ¥') are the
contracted components of the Levi-Civita connectior.of

If conditions(3.3) are satisfied, the general solutiong3a2) are implicitly given by the
generalised hodograph formula of Tsaf22]

VI(R) =x+ Y (R)y+u' (R, i=1,...,N.

Oncey’ have been found, the function$ (called the characteristic speeds) should be
determined from the linear relatiomfﬁ' = 9,;v'/(v/ —v%),i # j. Substituting this expression
in (3.1) shows thab;u are eigenvectors gfA — yI — u B) with zero eigenvalue. Therefore
y' andy! satisfy the dispersion relation

dettA — yI — uB) = 0. (3.4)

Solutions to(3.1) obtained from this algorithm are known as the non-linear interactions of
N planar simple waves. The procedure explained in this section has been ap[i&ia]
to construct explicit solutions to various PDEs which admit a represent@ib)

Ferapontov and Khusnutdinoy8] define a hyperbolic system of the forf®.1) to be
integrable if it possesses non-linear interaction®vgblanar simple waves parameterised
by N arbitrary functions of one variable. They have demonstrft8Hthat this definition
of integrability is equivalent to the existence a scalar pseudo-potential formulation of the
form

WyZ P(wxvusw)a wI: Q(wx»u,w)7

whereyr = (x, y, 1) and P, Q are rational imy,. This then implies that the integrable
equations (3.13rise as dispersionless (or quasi-classical) limits of non-linear PDEs solvable
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by inverse scattering transforf23]. These ‘dispersive’ PDEs are compatibility conditions
for the overdetermined linear system

0 d
Uy=P| — |¥ Ur = — | Y
Y (BX) 4 T Q(E)X)

where nowP and Q are linear differential operators, and the dispersionless limits can be
obtained by setting

0,0 lP(X“)—ex( <X_>>
axe  Coxa =exp\ VLS

and taking the limit: — 0. Finding a dispersive analogue (@f.1) is an interesting open
problem.

3.1. Example

According to Pavlo18] the hydrodynamic reductions ¢f.1) are characterised in a
sense that explicit formulae for (R), and/(R) can be found. This does not, however,
lead to explicit (or even implicit) solutions {d.1). The constraints on a solution (b.1)
imposed by the existence af-component reductions are not known. To this end, we shall
work out the constraint, and the corresponding solution which arise from a one-component
reduction.

For N = 1 we have:r = u(R), w = w(R), where the scalar variable = R! satisfies a
pair of PDESR, = y(R)R,, R, = (R)R,. All integrability conditions hold automatically,
and the dispersion relatidB.4)yields

u:w—l—)/u—i-yz.

Implicit differentiation ofu, w with respect tqx, y, 1), and eliminatingu’, w’, R,) gives a
constraint

Uxwy — uywy =0, (3.5)

which characterises solutions {b.1) arising from one-component hydrodynamic reduc-
tions. Using the relations

*dr = dr A dy, *dy = 2dt A dx — u dr A dy,
x0x =2wdy A dt + dy A dx + u df A dx,

wherex : A%(W) — A3~%(W) is the Hodge operator associated to the EW struqi®)
we find that the constrairf8.5)is equivalent to the relation

|du|? ;= du A *du = 0.

The solution can now easily be found by applying the Legendre transform. Regarding
andy as functions ofw, ¢, x) gives

uy =0, Uy = Yx» UyYr — UrYw — L+ UYy — WUy Yy — uxyy) =0,
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where the first relation arises from the constrétb). These equations can be integrated
to give two classes of solutions

1 at?
u1=at—|—aw+;, y1=ax—7+f1(w+t), us = 2/ w+1t,

x—t
2= Jori

where f1 and f> are arbitrary functions of one variable (one arbitrary functiontads been
eliminated in each class by a redefinition of coordinates) gae@ non-zero constant. The

resulting Einstein—Weyl spacgg.3) can be written down explicitly, and are completely
characterised by the conditigdu| = 0.

+ fa(w+1),

4. Thehierarchy

Consider a sphere of one-forms on an open sg&t'in*
e(2) =dio+ (. — Ho) dr1 + (\* — AHo — H1) dip + - - -
+ (" = A" Ho — -+ — AHy—2 — Hy—1) Ay,
whereH = H(io, 11, . .. , 1,), H, = 3H/d1, andx € CP. The system of PDEs
e(\) Ad(e(r)) =0 (4.1)

coincides with(1.1)if n = 2,70 = x,t1 = y,tp = tandu = Hy, w = —H,. If

n > 2 then(4.1)is highly overdetermined, and the Cauchy data can be specified on a
surface of co-dimensiom — 1 (rather than on a hypersurface). We shall call this system a
truncated hierarchy associatedtol). Allowing infinite sums ire(1) would lead to the full
hierarchy. The Frobenius theorem implies that atimensional distribution of vector fields
onR™t1 x CP! annihilatinge() is in involution. This gives rise to the Lax representation.
The vector fields

0 0H 9 0

R T P T

satisfyL,_|e()) = 0, and the relations

Lo= a=0,...,n—1 4.2)

[Lgy Lpl =0
yield the commuting flows of the hierarchy
Ha+1p — Hp+1)a + HaHop — HpHoq = 0. (4.3)

The Lax representatidd.2)fits into a general class of Lax formulations recently introduced
in[17]. Theorem 1.Ehould generalise to solutions(df 3). The twistor spac€ is a surface
which arises as a factor space@f ® CP! by a complexified distributio4.2). Repeating
the steps of the proof 6fheorem 1.1shows that the holomorphic fibratiofi — CP*
admits an(n + 1) family of holomorphic sections with normal bundi&n). The converse
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(recoveringH(1o, 11, . . . , 1)) form Zis, however, more difficult, because the vital relation
(2.3) with Einstein—Weyl geometry is missing far> 2. This interesting problem and its
connection with the quasi-classigahpproact15] will be addressed elsewhere.
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