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Abstract

HyperCR Einstein–Weyl equations in 2+ 1 dimensions reduce to a pair of quasi-linear PDEs
of hydrodynamic type. All solutions to this hydrodynamic system can in principle be constructed
from a twistor correspondence, thus establishing the integrability. Simple examples of solutions
including the hydrodynamic reductions yield new Einstein–Weyl structures.
© 2003 Elsevier B.V. All rights reserved.
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1. The equation

Let us consider a pair of quasi-linear PDEs

ut + wy + uwx − wux = 0, uy + wx = 0 (1.1)

for two real functionsu = u(x, y, t), w = w(x, y, t). This system of equation has recently
attracted a lot of attention in the integrable systems literature[9,10,17,18]. In [3] it arose in
a different context, as a symmetry reduction of the heavenly equation.

The system(1.1) shares many properties with two more prominent dispersionless in-
tegrable equations: the dispersionless Kadomtsev–Petviashvili equation (dKP), and the
SU(∞) Toda equation, but it is simpler in some ways:

• Its Lax representation

[L,M] = 0, where L = ∂t − w∂x − λ∂y, M = ∂y + u∂x − λ∂x (1.2)
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does not contain derivatives with respect to the spectral parameterλ (the Lax pairs for
SU(∞) Toda, and dKP contain such terms).

• Consider a one-form

e(λ) = dx − udy + wdt + λ(dy − udt)+ λ2 dt.

The system(1.1) is equivalent to the Frobenius integrability condition

e(λ) ∧ de(λ) = 0, (1.3)

where d keepsλ constant. This formulation is dual to the Lax representation(1.2), because
the distribution spanned byL andM can be defined as the kernel ofe(λ). The analogous
dual formulations of dKP and SU(∞) Toda involve distributions defined by two-forms
[5,16,21], and are considerably more complicated.

One of the aims of this paper is to provide a twistor description of(1.1) given by the
following theorem.

Theorem 1.1. There is a one-to-one correspondence between the equivalence classes of
solutions to(1.1) under point transformations, and complex surfaces(twistor spaces) Z
such that:

• There exists a holomorphic fibrationπ : Z→ CP
1.

• There exists a three-parameter family of holomorphic sections ofπ with normal bundle
O(2) invariant under an anti-holomorphic involutionτ : Z→ Z which fixes an equator
of each section.

The existence of the anti-holomorphic mapτ is required to construct real solutions to
(1.1). If one is merely interested in complex solutions, then the holomorphic fibration, and its
O(2) sections are all one needs.Theorem 1.1provides a parameterisation of local solutions
to a non-linearequation (1.1)by a holomorphic data unconstrained by any equations. In
this sense it resembles theinverse scattering transform. It remains to be seen whether this
theorem can be implemented in practice to construct explicit new solutions to(1.1).

The proof ofTheorem 1.1will be postponed toSection 2.2. In the next section we
shall demonstrate that solutions of(1.1)can be used to construct Lorentzian Einstein–Weyl
(EW) structures in three dimensions (formulae(2.3)). All EW structures which admit a
hyperboloid of Cauchy–Riemann structures locally arise from solutions to(1.1). We shall
give examples of new Einstein–Weyl spaces which arise in that way. InSection 3we
review the hydrodynamic reductions of(1.1), and use them to construct another class of
Einstein–Weyl spaces. Finally, inSection 4we study a hierarchy of commuting flows
associated to(1.1).

2. The geometry

LetW be a three-dimensional manifold with a torsion-free connectionD, and a conformal
structure [h] of signature(+ + −) which is compatible withD in a sense that

Dh = ω ⊗ h
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for some one-formω. Hereh ∈ [h] is a representative metric in a conformal class. If we
change this representative byh → ψ2h, thenω → ω+2 d ln ψ, whereψ is a non-vanishing
function onW . A triple (W, [h],D) is called a Weyl structure. The conformally invariant
Einstein–Weyl equations are

R(ab) = 1
3Rhab, a, b, . . . = 1,2,3. (2.1)

HereR(ab) is the symmetrised Ricci tensor ofD, andR is the Ricci scalar. One can regard
h andω as the unknowns in these equations. Once they have been found, the covariant
differentiation w.r.t.D is given by

Dχ = ∇χ− 1
2(χ⊗ ω + (1 −m)ω ⊗ V − h(ω, χ)h),

whereχ is a one-form of conformal weightm, and∇ is the Levi-Civita connection ofh.
It is well known [2,13,19] that the EW equations are equivalent to the existence of a

two-dimensional family of surfacesZ ⊂ W which are null with respect toh, and totally
geodesic with respect toD. This condition has been used in[5] to construct a Lax repre-
sentation for EW equation. The details are as follows: letV1, V2, V3 be three independent
vector fields onW , and lete1, e2, e3 be the dual one-forms. Assume that

h = e2 ⊗ e2 − 2(e1 ⊗ e3 + e3 ⊗ e1)

and some one-formω give an EW structure. LetV(λ) = V1−2λV2+λ2V3, whereλ ∈ CP
1.

Thenh(V(λ), V(λ)) = 0 for all λ ∈ CP
1 soV(λ) determines a sphere of null vectors. The

vectorsV1 − λV2 andV2 − λV3 form a basis of the orthogonal complement ofV(λ). For
eachλ ∈ CP

1 they span a null two surface. Therefore the Frobenius theorem implies that
the horizontal lifts

L = V1 − λV2 + l∂λ, M = V2 − λV3 +m∂λ (2.2)

of these vectors toT(W × CP
1) span an integrable distribution, and(2.1) is equivalent to

[L,M] = αL+ βM

for someα, β which are linear inλ. The functionsl andm are third order inλ, because the
Möbius transformations ofCP

1 are generated by vector fields quadratic inλ.
LetW1, . . . ,W4 be linearly dependent vector fields which spanTW. Given a Lax repre-

sentation [W1 − λW2,W3 − λW4] = 0, it is always possible to put it in the form(2.2)with
m = l = 0. Therefore the Lax pair(1.2)for Eq. (1.1)is a special case of the Einstein–Weyl
Lax pair(2.2). One finds that

V1 = ∂t + u∂y + (u2 − w)∂x, V2 = ∂y + u∂x, V3 = ∂x

and

[V1 − λV2, V2 − λV3] = −(V2(u)− λV3(u))(V2 − λV3)

is equivalent toEq. (1.1).
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The dual one-forms(e1, e2, e2) give a metric in the EW conformal class. The associated
one-form can now be found such that the resulting Einstein–Weyl structure is

h = (dy − udt)2 − 4(dx − udy + wdt)dt, ω = ux dy + (uux + 2uy)dt. (2.3)

The Ricci scalar ofD isR = (3/8)(ux)2, and the one-forme(λ) used in the dual formulation
(1.3) is e(λ) = e1 + 2λe2 + λ2e3.

The absence of the vertical terms in the Lax pair implies that the Einstein–Weyl structure
belongs to the Lorentzian analogue of the so-called hyperCR class[11]. The (Lorentzian)
hyperCR EW spaces arise on the space of trajectories of tri-holomorphic conformal Killing
vectors in four-dimensional manifolds with (pseudo)hyper-complex structure.1 Readers
unfamiliar with the details of these pseudo-hyper-complex geometries in four dimensions
should note that the conditionl = m = 0 in (2.2)can be used as an equivalent definition of
the hyperCR class, and can go directly to the statement ofTheorem 2.1.

Any pseudo-hyper-complex conformal structure([g], I, S, T) in four dimensions with a
conformal Killing vectorK gives rise to an EW structure[5,14] defined by

h := |K|−2g − |K|−4K ⊗K, ω := 2|K|−2 ∗g (K ∧ dK), g ∈ [g], (2.4)

and all EW spaces arise from this construction. If the Killing vectorK preserves the en-
domorphismsI, S, T , then the resulting EW structure(2.4) is called hyperCR. Conversely,
given a hyperCR Einstein–Weyl structure(h, ω) one can construct the representativeg of
a pseudo-hyper-complex conformal class [g] by

g = eT (Vh− V−1(dT + β)2), (2.5)

whereT is a group parameter, and the functionV and the one-formβ solve the monopole
equation

∗(dV + 1
2ωV) = dβ (2.6)

(here∗ is taken with respect toh). There exists a special solution to(2.6)with β = −ω/2,
such that the resulting metric is pseudo-hyper-Kahler (the two-forms associated toI, S, T

are closed). The details of all that are in[11]. Minor sign changes are needed to apply the
theory in signature(+ + –). The hyperCR EW structure were constructed out of symmetry
reductions of heavenly equations in[6].

We shall now show that the system(1.1)arises as a symmetry reduction of the pseudo-
hyper-Kähler condition with a general homothetic Killing vector, thus establishing the
following result.

1 A smooth real four-dimensional manifoldM equipped with three real endomorphismsI, S, T : TM→ TM
of the tangent bundle satisfying the algebra of pseudo-quaternions

−I2 = S2 = T 2 = 1, IST= 1,

is called pseudo-hyper-complex iff the almost complex structureJ = aI + bS+ cT is integrable for any point of
the hyperboloida2 − b2 − c2 = 1. A choice of a vectorX ∈ TM defines a(+ + –) conformal structure [g] with
an orthonormal frameX, IX,SX,TX. If this conformal structure admits a Killing vectorK which preservesI, S, T ,
then the hyperboloid of complex structuresJ descends to a hyperboloid of Cauchy–Riemann (CR) structures on
the space of orbitsW of K. This justifies the terminology.
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Theorem 2.1. All Lorentzian hyperCR Einstein–Weyl structures are locally of the form
(2.3), where u, w satisfy(1.1).

Proof. It follows from the work of Plebánski [20] that all pseudo-hyper-Kähler (or ASD
vacuum) metrics are locally of the form

g = 2(dZ dY + dW dX−ΘXX dX2 −ΘYYdW2 + 2ΘXYdW dZ), (2.7)

where(W,Z,X, Y) are the local coordinates on the open ball inR
4, andΘ = Θ(W,Z,X, Y)

satisfies the second heavenly equation

ΘZY +ΘWX +ΘXXΘYY−Θ2
XY = 0. (2.8)

In an ASD vacuum the most general tri-holomorphic homothetic Killing vectorK satisfies
LKΣi = cΣi, whereLK is the Lie derivative alongK andΣ1,Σ2,Σ3 are three closed
self-dual two-forms corresponding to the complex structures. We can setc = 1 without
lose of generality. In the coordinate system adopted to(2.7)

Σ1 = dW ∧ dZ, Σ2 = dW ∧ dX+ dZ ∧ dY

and the residual freedom in the choice of coordinates can be used to set

K = Z
∂

∂Z
+X

∂

∂X
.

The Killing equations yield

LK(ΘXX) = −ΘXX, LK(ΘXY) = 0, LK(ΘYY) = ΘYY.

LetU andT be functions onR4 such thatK = ∂/∂T andLK(U) = 0. We can take

T = ln(Z), U = −X

Z
.

The compatibility conditions for the Killing equations imply the existence ofG = G(Y,W,U)

such that

ΘXX = −e−TGUU, ΘXY = GYU, ΘYY = −eTGYY.

The heavenlyequation (2.8)becomes

−(GY − UGYU)+GUW +GYYGUU −G2
YU = 0,

or (in terms of differential forms)

−GY dY ∧ dU ∧ dW + U dGU ∧ dU ∧ dW + dGU ∧ dY ∧ dU

+ dGY ∧ dGU ∧ dW = 0. (2.9)

Define

x = GU, y = Y, t = −W, H(x, y, t) = xU(x, y, t)−G(Y,W,U(x, y, t))
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and preform a Legendre transform

dH = d(xU −G) = U dx −GY dY −GW dW = Hx dx +Hy dy +Ht dt.

Therefore

U = Hx, GY = −Hy, GW = Ht.

Differentiating these relations we find

GUU = 1

Hxx
, GYU = −Hxy

Hxx
, GYY = −Hyy + H2

xy

Hxx
.

The differential equation forH(x, y, t) is obtained from(2.9)

Hxt − (HxyHx −HyHxx) = Hyy. (2.10)

This equation is equivalent to the system(1.1) which can be seen by settingu = Hx,
w = −Hy.

The metric(2.7) can be written in the form(2.5) whereh, ω are given by(2.3), and
V = ux/2, β = −ω/2 satisfy the monopoleequation (2.6). We deduce that(2.3) is
the most general EW space which arises on the space of orbits of tri-holomorphic ho-
mothety in pseudo-hyper-Kähler four manifold, and so it is the most general hyperCR
EW space. �

2.1. Simple solutions

Simple classes of solutions to(1.1) yield non-trivial Einstein–Weyl structures, some of
which appear to be new:

• Let us assume thatu andw in (1.1)do not depend ony. One needs to consider the two
casesw = 0 andw = w(t) �= 0 separately. The corresponding equations can now be
easily integrated to give (in thew �= 0 case one needs to change variables)

h = (dy + Adt)2 − 4 dx dt, ω = A′ dy + AA′ dt, (2.11)

whereA = A(x) is an arbitrary function. Some interesting complete solutions belong to
this class. For exampleA = a2x, wherea is a non-zero constant leads to the Einstein–Weyl
structure on Thurston’s nil manifoldS1 × R

2 [19]: settingx̂ = a2x, and rescalingh by
a constant factor gives

h = a2(dy + x̂ dt)2 − 4 dx̂ dt, ω = a2(dy + x̂ dt).

In this simple case we can find a kernel of the Lax vector fields(1.2)(the twistor functions)
to beλ,ψ = y + λt − a−2 ln(λ− a2x).

• Looking for t-independent solutions reduces(1.1) to a linear equation. Rewriting the
resulting system as

dx ∧ du− dy ∧ dw = 0, dx ∧ dw− (udw− wdu) ∧ dy = 0
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and regardingx andy as functions ofu andw yields a system of linear equation. One of
these equations implies thaty = −Fw, x = Fu for someF = F(u,w), while the other
equation yields

Fuu + uFuw + wFww = 0.

• The constraintux = 0 leads to trivial EW spaces. One finds thatu has to be linear iny,
and the EW one-formω is closed. It can therefore be set to 0 be the conformal rescaling,
and the EW structure is conformal to an Einstein metric.

2.2. Proof of Theorem 1.1

Given a real–analytic solution to(1.1) we can complexify it, and regardu andw as
holomorphic functions of local complex coordinates(x, y, t) on a complex three-manifold
WC. The twistor spaceZ for such solution is obtained by factoringF = WC × CP

1 by
the distributionL,M (1.2). This clearly has a projectionq : F �→ Z and we have a double
fibration

The absence of vertical terms inL,M shows thatλ descends fromF toZ thus giving the
holomorphic projectionπ : Z → CP

1. Each pointp ∈ WC determines a spherelp (a
section ofπ) made up of all the integral surfaces ofL,M throughp. The normal bundle
of lp in Z is N = TZ|lp/Tlp. This is a rank 1 vector bundle overCP

1, therefore it has to
be one of the standard line bundlesO(n). To see thatn = 2, note thatN can be identified
with the quotientr∗(TpWC)/{spanL,M}. In their homogeneous form the operatorsL,M

have weight 1, so the distribution spanned by them is isomorphic to the bundleC
2 ⊗

O(−1). The definition of the normal bundle as a quotient gives a sequence of sheaves
overCP

1.

0 → C
2 ⊗O(−1) → C

3 → N → 0

and we see thatN = O(2), because the last map, is given explicitly by(V1, V2, V3) �→
V(λ) = V1 − 2λV2 + λ2V3 clearly projecting ontoO(2).

If u,w is a real solutions defined on a real sliceW ⊂ WC, then one has an additional
structure onZ. The real structureτ(x, y, t) = (x̄, ȳ, t̄) maps integral surfaces ofL,M to
integral surfaces, and therefore induces an anti-holomorphic involutionτ : Z → Z. The
fixed points of this involution correspond to real integral surfaces inW , andτ-invariant
O(2) sections correspond to points inW .

Conversely, let us assume that we are given a complex manifoldZ with additional struc-
tures described inTheorem 1.1. The general construction of Hitchin[13] equips the moduli
spaceW of O(2) rational curves with a real-analytic Einstein–Weyl structure: the Kodaira
theorems imply thatW is three-dimensional. Two points inW are null-separated if the cor-
responding sections intersect at one point inZ. This defines the conformal structure [h]. To
define a connection note that a direction atp ∈ W corresponds to a one-dimensional
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space ofO(2) curves inZ which vanish at two pointsZ1 andZ2. This gives distin-
guished curves inW which pass through null surfaces inW corresponding toZ1, Z2.
There is one such curve throughp and Hitchin defines it to be a geodesic. He moreover
shows that the resulting connection is torsion-free, and that the Einstein–Weyl equations
hold.

This works for arbitrary complex surface with an embeddedO(2) rational curve. The
additional structure in the statement ofTheorem 1.1is the holomorphic projectionπ. Its
existence implies that the resulting EW space is hyperCR. Any holomorphic line bundle
L → O(2) with c1(L) = 0 inherits the holomorphic projection toCP

1. Lifts of holo-
morphic sections ofZ→ CP

1 to L are rational curves with normal bundleO(1) ⊕O(1).
ThereforeL is a twistor space of a pseudo-hyper-complex four manifoldM [4]. This
pseudo-hyper-complex structure is preserved by a Killing vector which gives rise to a hy-
perboloid of CR structures onW . Theorem 2.1implies that(h, ω) are locally given by(2.3),
and we can read off(u,w) which solveEq. (1.1).

2.3. Geodesic congruences

Let (W, [h],D) be a 2+1 EW structure. A geodesic congruenceΓ in a region inŴ ⊂ W

is a set of geodesic, one through each point ofŴ . Letχ be a generator ofΓ (a vector field
tangent toΓ ). The geodesic conditionχaDaχ

b ∼ χb impliesDaχ
b = Mb

a +Aaχ
b for some

Aa, whereMb
a is orthogonal toχa on both indices. Consider the decomposition ofMab

Mab = Ωab +Σab + 1
2θĥab.

The shearΣab is trace-free and symmetric. The twistΩab is anti-symmetric, and the diver-
genceθ is a weighted scalar. Herêhab = ‖χ‖2hab−χaχb is an orthogonal projection ofhab.
The shear-free geodesics congruences (SFC) exist on any Einstein–Weyl space. This fol-
lows from a three-dimensional version of Kerr’s theorem which states that SFCs correspond
to holomorphic curves in the twistor spaceZ. On the other hand, imposing the vanishing
of the divergence of a congruence gives restrictions on EW structures, and implies that the
EW space is hyperCR[1]. In the local coordinate system adopted inTheorem 2.1(h, ω)
are given by(2.3), and the shear-free, divergence-free geodesic congruence is generated by
a one-formχ = dt. In accordance with the general theory of SFC on Einstein–Weyl spaces
[1], the preferred monopole proportional to the scalar twistκ = ∗(χ ∧ Dχ) = −ux/4
will lead to a pseudo-hyper-Kähler metric with a tri-holomorphic homothety in four di-
mensions. This metric is explicitly given by(2.5), whereV = −(1/2)κ, β = −ω/2.
Any other monopole yields a general pseudo-hyper-complex conformal structure with a
tri-holomorphic symmetry.

3. The hydrodynamic reductions

Eq. (1.1)can be cast in a general quasi-linear vector form

uy + A(u)ux + B(u)ut = 0, (3.1)
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whereu = (u,w)T is a vector whose components depend on(x, y, t), and

A(u) =
(

0 1
−w u

)
, B(u) =

(
0 0
1 0

)
.

A class of solutions to any equation of the form(3.1) can be generated by assuming that
u = u(R1, . . . , RN), whereRi = Ri(x, y, t) (the so-called Riemann invariants) satisfy a
pair of commuting systems of hydrodynamic type

Ri
y = γi(R)Ri

x, Ri
t = µi(R)Ri

x, i = 1,2, . . . , N (3.2)

(the summation convention has been suspended in this section). The compatibility condi-
tions for the system(3.2)yield

∂jγ
i

γj − γi
= ∂jµ

i

µj − µi
, i �= j, ∂j = ∂

∂Rj
. (3.3)

It turns out that the additional relations

∂k
∂jγ

i

γj − γi
= ∂j

∂kγ
i

γk − γi

(and analogous relations forµi) hold. These conditions imply the existence of a diago-
nal metricg = ∑

i gii (R)d(Ri)2 such thatΓ i
ji = ∂j ln(

√
gii ) = ∂jγ

i/(γj − γi) are the
contracted components of the Levi-Civita connection ofg.

If conditions(3.3)are satisfied, the general solutions to(3.2)are implicitly given by the
generalised hodograph formula of Tsarev[22]

vi(R) = x + γi(R)y + µi(R)t, i = 1, . . . , N.

Onceγi have been found, the functionsvi (called the characteristic speeds) should be
determined from the linear relationsΓ i

ji = ∂jv
i/(vj−vi), i �= j. Substituting this expression

in (3.1)shows that∂iu are eigenvectors of(A− γI −µB) with zero eigenvalue. Therefore
γi andµi satisfy the dispersion relation

det(A− γI − µB) = 0. (3.4)

Solutions to(3.1)obtained from this algorithm are known as the non-linear interactions of
N planar simple waves. The procedure explained in this section has been applied in[7,8,12]
to construct explicit solutions to various PDEs which admit a representation(3.1).

Ferapontov and Khusnutdinova[9] define a hyperbolic system of the form(3.1) to be
integrable if it possesses non-linear interactions ofN planar simple waves parameterised
by N arbitrary functions of one variable. They have demonstrated[10] that this definition
of integrability is equivalent to the existence a scalar pseudo-potential formulation of the
form

ψy = P(ψx, u,w), ψt = Q(ψx, u,w),

whereψ = ψ(x, y, t) andP,Q are rational inψx. This then implies that the integrable
equations (3.1)arise as dispersionless (or quasi-classical) limits of non-linear PDEs solvable
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by inverse scattering transform[23]. These ‘dispersive’ PDEs are compatibility conditions
for the overdetermined linear system

ΨY = P

(
∂

∂X

)
Ψ, ΨT = Q

(
∂

∂X

)
Ψ,

where nowP andQ are linear differential operators, and the dispersionless limits can be
obtained by setting

∂

∂Xa
→ ε

∂

∂xa
, Ψ(Xa) = exp

(
ψ

(
xa

ε

))

and taking the limitε → 0. Finding a dispersive analogue of(1.1) is an interesting open
problem.

3.1. Example

According to Pavlov[18] the hydrodynamic reductions of(1.1) are characterised in a
sense that explicit formulae forγi(R), andµi(R) can be found. This does not, however,
lead to explicit (or even implicit) solutions to(1.1). The constraints on a solution to(1.1)
imposed by the existence ofN-component reductions are not known. To this end, we shall
work out the constraint, and the corresponding solution which arise from a one-component
reduction.

ForN = 1 we haveu = u(R), w = w(R), where the scalar variableR = R1 satisfies a
pair of PDEsRy = γ(R)Rx,Rt = µ(R)Rx. All integrability conditions hold automatically,
and the dispersion relation(3.4)yields

µ = w+ γu+ γ2.

Implicit differentiation ofu,w with respect to(x, y, t), and eliminating(u′, w′, Rx) gives a
constraint

uxwy − uywx = 0, (3.5)

which characterises solutions to(1.1) arising from one-component hydrodynamic reduc-
tions. Using the relations

∗dt = dt ∧ dy, ∗dy = 2dt ∧ dx − udt ∧ dy,

∗dx= 2wdy ∧ dt + dy ∧ dx + udt ∧ dx,

where∗ : Λa(W) → Λ3−a(W) is the Hodge operator associated to the EW structure(2.3)
we find that the constraint(3.5) is equivalent to the relation

|du|2 := du ∧ ∗du = 0.

The solution can now easily be found by applying the Legendre transform. Regardingu

andy as functions of(w, t, x) gives

ux = 0, uw = yx, uwyt − utyw − 1 + uyx − w(uwyx − uxyw) = 0,
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where the first relation arises from the constraint(3.5). These equations can be integrated
to give two classes of solutions

u1 = at + aw+ 1

a
, y1 = ax− at2

2
+ f1(w+ t), u2 = 2

√
w+ t,

y2 = x − t√
w+ t

+ f2(w+ t),

wheref1 andf2 are arbitrary functions of one variable (one arbitrary function oft has been
eliminated in each class by a redefinition of coordinates), anda is a non-zero constant. The
resulting Einstein–Weyl spaces(2.3) can be written down explicitly, and are completely
characterised by the condition|du| = 0.

4. The hierarchy

Consider a sphere of one-forms on an open set inR
n+1

e(λ)= dt0 + (λ−H0)dt1 + (λ2 − λH0 −H1)dt2 + · · ·
+ (λn − λn−1H0 − · · · − λHn−2 −Hn−1)dtn,

whereH = H(t0, t1, . . . , tn),Ha = ∂H/∂ta andλ ∈ CP
1. The system of PDEs

e(λ) ∧ d(e(λ)) = 0 (4.1)

coincides with(1.1) if n = 2, t0 = x, t1 = y, t2 = t and u = Hx, w = −Hy. If
n > 2 then(4.1) is highly overdetermined, and the Cauchy data can be specified on a
surface of co-dimensionn − 1 (rather than on a hypersurface). We shall call this system a
truncated hierarchy associated to(1.1). Allowing infinite sums ine(λ)would lead to the full
hierarchy. The Frobenius theorem implies that ann-dimensional distribution of vector fields
onR

n+1 × CP
1 annihilatinge(λ) is in involution. This gives rise to the Lax representation.

The vector fields

La = ∂

∂ta+1
+ ∂H

∂ta

∂

∂t0
− λ

∂

∂ta
, a = 0, . . . , n− 1 (4.2)

satisfyLa |e(λ) = 0, and the relations

[La,Lb] = 0

yield the commuting flows of the hierarchy

H(a+1)b −H(b+1)a +HaH0b −HbH0a = 0. (4.3)

The Lax representation(4.2)fits into a general class of Lax formulations recently introduced
in [17]. Theorem 1.1should generalise to solutions of(4.3). The twistor spaceZ is a surface
which arises as a factor space ofC

n ⊗ CP
1 by a complexified distribution(4.2). Repeating

the steps of the proof ofTheorem 1.1shows that the holomorphic fibrationZ → CP
1

admits an(n+ 1) family of holomorphic sections with normal bundleO(n). The converse
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(recoveringH(t0, t1, . . . , tn)) formZ is, however, more difficult, because the vital relation
(2.3)with Einstein–Weyl geometry is missing forn > 2. This interesting problem and its
connection with the quasi-classical∂̄ approach[15] will be addressed elsewhere.
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